3.1.63 \(\int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx\) [63]

3.1.63.1 Optimal result
3.1.63.2 Mathematica [A] (verified)
3.1.63.3 Rubi [A] (verified)
3.1.63.4 Maple [A] (verified)
3.1.63.5 Fricas [A] (verification not implemented)
3.1.63.6 Sympy [B] (verification not implemented)
3.1.63.7 Maxima [A] (verification not implemented)
3.1.63.8 Giac [A] (verification not implemented)
3.1.63.9 Mupad [B] (verification not implemented)

3.1.63.1 Optimal result

Integrand size = 21, antiderivative size = 153 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {13 x}{2 a^3}-\frac {152 \sin (c+d x)}{15 a^3 d}+\frac {13 \cos (c+d x) \sin (c+d x)}{2 a^3 d}-\frac {\cos ^4(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {11 \cos ^3(c+d x) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {76 \cos ^2(c+d x) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )} \]

output
13/2*x/a^3-152/15*sin(d*x+c)/a^3/d+13/2*cos(d*x+c)*sin(d*x+c)/a^3/d-1/5*co 
s(d*x+c)^4*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-11/15*cos(d*x+c)^3*sin(d*x+c)/a 
/d/(a+a*cos(d*x+c))^2-76/15*cos(d*x+c)^2*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))
 
3.1.63.2 Mathematica [A] (verified)

Time = 2.03 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.83 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \csc ^6(c+d x) \sin ^7\left (\frac {1}{2} (c+d x)\right ) \left (12480 \arcsin (\cos (c+d x)) \cos ^6\left (\frac {1}{2} (c+d x)\right )+(4303+6006 \cos (c+d x)+1856 \cos (2 (c+d x))+90 \cos (3 (c+d x))-15 \cos (4 (c+d x))) \sqrt {\sin ^2(c+d x)}\right )}{15 a^3 d \sqrt {\sin ^2(c+d x)}} \]

input
Integrate[Cos[c + d*x]^5/(a + a*Cos[c + d*x])^3,x]
 
output
-1/15*(Cos[(c + d*x)/2]*Csc[c + d*x]^6*Sin[(c + d*x)/2]^7*(12480*ArcSin[Co 
s[c + d*x]]*Cos[(c + d*x)/2]^6 + (4303 + 6006*Cos[c + d*x] + 1856*Cos[2*(c 
 + d*x)] + 90*Cos[3*(c + d*x)] - 15*Cos[4*(c + d*x)])*Sqrt[Sin[c + d*x]^2] 
))/(a^3*d*Sqrt[Sin[c + d*x]^2])
 
3.1.63.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {3042, 3244, 3042, 3456, 3042, 3456, 3042, 3213}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^5(c+d x)}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^5}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle -\frac {\int \frac {\cos ^3(c+d x) (4 a-7 a \cos (c+d x))}{(\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (4 a-7 a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int \frac {\cos ^2(c+d x) \left (33 a^2-43 a^2 \cos (c+d x)\right )}{\cos (c+d x) a+a}dx}{3 a^2}+\frac {11 a \sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (33 a^2-43 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}+\frac {11 a \sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\frac {\int \cos (c+d x) \left (152 a^3-195 a^3 \cos (c+d x)\right )dx}{a^2}+\frac {76 a^2 \sin (c+d x) \cos ^2(c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {11 a \sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\int \sin \left (c+d x+\frac {\pi }{2}\right ) \left (152 a^3-195 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}+\frac {76 a^2 \sin (c+d x) \cos ^2(c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {11 a \sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3213

\(\displaystyle -\frac {\frac {\frac {76 a^2 \sin (c+d x) \cos ^2(c+d x)}{d (a \cos (c+d x)+a)}+\frac {\frac {152 a^3 \sin (c+d x)}{d}-\frac {195 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac {195 a^3 x}{2}}{a^2}}{3 a^2}+\frac {11 a \sin (c+d x) \cos ^3(c+d x)}{3 d (a \cos (c+d x)+a)^2}}{5 a^2}-\frac {\sin (c+d x) \cos ^4(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

input
Int[Cos[c + d*x]^5/(a + a*Cos[c + d*x])^3,x]
 
output
-1/5*(Cos[c + d*x]^4*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^3) - ((11*a*Cos 
[c + d*x]^3*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2) + ((76*a^2*Cos[c + 
d*x]^2*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])) + ((-195*a^3*x)/2 + (152*a^3 
*Sin[c + d*x])/d - (195*a^3*Cos[c + d*x]*Sin[c + d*x])/(2*d))/a^2)/(3*a^2) 
)/(5*a^2)
 

3.1.63.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3213
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]), x_Symbol] :> Simp[(2*a*c + b*d)*(x/2), x] + (-Simp[(b*c + a*d)*(Co 
s[e + f*x]/f), x] - Simp[b*d*Cos[e + f*x]*(Sin[e + f*x]/(2*f)), x]) /; Free 
Q[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 
3.1.63.4 Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.50

method result size
parallelrisch \(\frac {-\frac {1001 \left (\cos \left (d x +c \right )+\frac {928 \cos \left (2 d x +2 c \right )}{3003}+\frac {15 \cos \left (3 d x +3 c \right )}{1001}-\frac {5 \cos \left (4 d x +4 c \right )}{2002}+\frac {331}{462}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sec ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{160}+\frac {13 d x}{2}}{a^{3} d}\) \(77\)
derivativedivides \(\frac {-\frac {\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-31 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {-28 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+52 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d \,a^{3}}\) \(101\)
default \(\frac {-\frac {\left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}+\frac {8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-31 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {-28 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+52 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d \,a^{3}}\) \(101\)
risch \(\frac {13 x}{2 a^{3}}-\frac {i {\mathrm e}^{2 i \left (d x +c \right )}}{8 d \,a^{3}}+\frac {3 i {\mathrm e}^{i \left (d x +c \right )}}{2 d \,a^{3}}-\frac {3 i {\mathrm e}^{-i \left (d x +c \right )}}{2 d \,a^{3}}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d \,a^{3}}-\frac {2 i \left (150 \,{\mathrm e}^{4 i \left (d x +c \right )}+525 \,{\mathrm e}^{3 i \left (d x +c \right )}+745 \,{\mathrm e}^{2 i \left (d x +c \right )}+485 \,{\mathrm e}^{i \left (d x +c \right )}+127\right )}{15 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}\) \(148\)
norman \(\frac {\frac {13 x}{2 a}-\frac {51 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}-\frac {721 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}-\frac {6613 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{60 d a}-\frac {1165 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}-\frac {475 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}-\frac {59 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}+\frac {5 \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}-\frac {\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )}{20 d a}+\frac {65 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {65 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {65 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {65 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {13 x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{5} a^{2}}\) \(262\)

input
int(cos(d*x+c)^5/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)
 
output
13/160*(-77*(cos(d*x+c)+928/3003*cos(2*d*x+2*c)+15/1001*cos(3*d*x+3*c)-5/2 
002*cos(4*d*x+4*c)+331/462)*tan(1/2*d*x+1/2*c)*sec(1/2*d*x+1/2*c)^4+80*d*x 
)/a^3/d
 
3.1.63.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.88 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {195 \, d x \cos \left (d x + c\right )^{3} + 585 \, d x \cos \left (d x + c\right )^{2} + 585 \, d x \cos \left (d x + c\right ) + 195 \, d x + {\left (15 \, \cos \left (d x + c\right )^{4} - 45 \, \cos \left (d x + c\right )^{3} - 479 \, \cos \left (d x + c\right )^{2} - 717 \, \cos \left (d x + c\right ) - 304\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate(cos(d*x+c)^5/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 
output
1/30*(195*d*x*cos(d*x + c)^3 + 585*d*x*cos(d*x + c)^2 + 585*d*x*cos(d*x + 
c) + 195*d*x + (15*cos(d*x + c)^4 - 45*cos(d*x + c)^3 - 479*cos(d*x + c)^2 
 - 717*cos(d*x + c) - 304)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*c 
os(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 
3.1.63.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 473 vs. \(2 (143) = 286\).

Time = 3.89 (sec) , antiderivative size = 473, normalized size of antiderivative = 3.09 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\begin {cases} \frac {390 d x \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} + \frac {780 d x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} + \frac {390 d x}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} - \frac {3 \tan ^{9}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} + \frac {34 \tan ^{7}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} - \frac {388 \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} - \frac {1310 \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} - \frac {765 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{60 a^{3} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 120 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 60 a^{3} d} & \text {for}\: d \neq 0 \\\frac {x \cos ^{5}{\left (c \right )}}{\left (a \cos {\left (c \right )} + a\right )^{3}} & \text {otherwise} \end {cases} \]

input
integrate(cos(d*x+c)**5/(a+a*cos(d*x+c))**3,x)
 
output
Piecewise((390*d*x*tan(c/2 + d*x/2)**4/(60*a**3*d*tan(c/2 + d*x/2)**4 + 12 
0*a**3*d*tan(c/2 + d*x/2)**2 + 60*a**3*d) + 780*d*x*tan(c/2 + d*x/2)**2/(6 
0*a**3*d*tan(c/2 + d*x/2)**4 + 120*a**3*d*tan(c/2 + d*x/2)**2 + 60*a**3*d) 
 + 390*d*x/(60*a**3*d*tan(c/2 + d*x/2)**4 + 120*a**3*d*tan(c/2 + d*x/2)**2 
 + 60*a**3*d) - 3*tan(c/2 + d*x/2)**9/(60*a**3*d*tan(c/2 + d*x/2)**4 + 120 
*a**3*d*tan(c/2 + d*x/2)**2 + 60*a**3*d) + 34*tan(c/2 + d*x/2)**7/(60*a**3 
*d*tan(c/2 + d*x/2)**4 + 120*a**3*d*tan(c/2 + d*x/2)**2 + 60*a**3*d) - 388 
*tan(c/2 + d*x/2)**5/(60*a**3*d*tan(c/2 + d*x/2)**4 + 120*a**3*d*tan(c/2 + 
 d*x/2)**2 + 60*a**3*d) - 1310*tan(c/2 + d*x/2)**3/(60*a**3*d*tan(c/2 + d* 
x/2)**4 + 120*a**3*d*tan(c/2 + d*x/2)**2 + 60*a**3*d) - 765*tan(c/2 + d*x/ 
2)/(60*a**3*d*tan(c/2 + d*x/2)**4 + 120*a**3*d*tan(c/2 + d*x/2)**2 + 60*a* 
*3*d), Ne(d, 0)), (x*cos(c)**5/(a*cos(c) + a)**3, True))
 
3.1.63.7 Maxima [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.20 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {\frac {60 \, {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {7 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{3} + \frac {2 \, a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{3} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\frac {465 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {40 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {780 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}}{60 \, d} \]

input
integrate(cos(d*x+c)^5/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 
output
-1/60*(60*(5*sin(d*x + c)/(cos(d*x + c) + 1) + 7*sin(d*x + c)^3/(cos(d*x + 
 c) + 1)^3)/(a^3 + 2*a^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a^3*sin(d*x 
 + c)^4/(cos(d*x + c) + 1)^4) + (465*sin(d*x + c)/(cos(d*x + c) + 1) - 40* 
sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d*x + c) + 1)^ 
5)/a^3 - 780*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3)/d
 
3.1.63.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.74 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {\frac {390 \, {\left (d x + c\right )}}{a^{3}} - \frac {60 \, {\left (7 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 5 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a^{3}} - \frac {3 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 40 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 465 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

input
integrate(cos(d*x+c)^5/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 
output
1/60*(390*(d*x + c)/a^3 - 60*(7*tan(1/2*d*x + 1/2*c)^3 + 5*tan(1/2*d*x + 1 
/2*c))/((tan(1/2*d*x + 1/2*c)^2 + 1)^2*a^3) - (3*a^12*tan(1/2*d*x + 1/2*c) 
^5 - 40*a^12*tan(1/2*d*x + 1/2*c)^3 + 465*a^12*tan(1/2*d*x + 1/2*c))/a^15) 
/d
 
3.1.63.9 Mupad [B] (verification not implemented)

Time = 14.30 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.90 \[ \int \frac {\cos ^5(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-46\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+508\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+420\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-120\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-390\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (c+d\,x\right )}{60\,a^3\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5} \]

input
int(cos(c + d*x)^5/(a + a*cos(c + d*x))^3,x)
 
output
-(3*sin(c/2 + (d*x)/2) - 46*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2) + 508* 
cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2) + 420*cos(c/2 + (d*x)/2)^6*sin(c/2 
 + (d*x)/2) - 120*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2) - 390*cos(c/2 + 
(d*x)/2)^5*(c + d*x))/(60*a^3*d*cos(c/2 + (d*x)/2)^5)